Orthology Inference

Christophe Dessimoz
cdessimoz@inf.ethz.ch

Bioinformatics and Comparative Genome Analysis
Institut Pasteur Paris, July 2011
Outline

• Motivation and Definition
• Orthology Inference
 • Tree reconciliation methods
 • Pairwise methods
 • Orthologous groups
• Verification
• Limitations and Future Directions
Motivation and Definition
Definition

DISTINGUISHING HOMOLOGOUS FROM ANALOGOUS PROTEINS

WALTER M. FITCH

Therefore, there should be two subclasses of homology. Where the homology is the result of gene duplication so that both copies have descended side by side during the history of an organism, (for example, α and β hemoglobin) the genes should be called *paralogous* (para = in parallel). Where the homology is the result of speciation so that the history of the gene reflects the history of the species (for example α hemoglobin in man and mouse) the genes should be called *orthologous* (ortho = exact). Phylogenies require orthologous, not paralogous, genes. Note that the present method does not permit

Formally

Two homologous genes \((x,y)\) are orthologs if they started diverging through a speciation event.

Observations

- relation defined on a *pair* of genes
- non-transitive
Why useful?

- Species Tree Reconstruction
- Functional annotation
 Prevalent model:
 - orthologs share similar function
 - paralogs have different functions
- Physical Mapping between genomes

...
Inparalogy (Remm et al. 2001)

Relevant properties
- reference must be specified
Other usages of orthology*

- Genes with the same *function*
 - “isofunctional homologs”
 - “equivalogs”

- Homologs that are in the same genomic context
 - “positional ortholog”

*not recommended
Inference
Homology

- Commonly inferred by sequence similarity:
 - “All-against-all”
 - Profile-based search

- At low similarity (20-30% identity, “twilight zone”), protein structure tends to be better conserved, but

 😞 structure often unknown
 😞 only for conserved regions

B Rost, Protein Engineering vol.12 no.2 pp.85–94, 1999
Pairwise alignments statistics

Alignment score of 2 unrelated sequences are distributed according to Gumbel distribution (2 parameters, fat tail)

Params are estimated from seq lengths and scoring matrix (Karlin-Altschul theory)

Significance is assessed by its E-value (expected # spurious matches with score equal or higher), computed from probability density

http://www.math.ku.dk/~richard/courses/binf_project/Stinus-BLAST.pdf
Orthology

Bidirectional Best-Hit

Gene/Species Tree Reconciliation

Dufayard et al., Bioinformatics, 2005
Tree Reconciliation

Maximum Parsimony

Reconciliation
For any $g \in G$, let $M(g) \in S$ be the smallest (lowest) node in S satisfying $\gamma(g) \subseteq \sigma(M(g))$. That is, $M(g)$ points to the ancestral species in S that (we infer) harbored ancestral gene g.

Zmasek & Eddy 2001
Map <-> Reconciliation

- Mirkin, Muchnik, Smith (1996) conjecture that the map cost function coincide with number of gene duplication and losses.

- Zhang (1997) and Eulenstein (1997) independently prove it, and identify efficient algorithms to compute map: in $O(n)$ and $O(n^*\alpha(n))$ respectively.
Mapping
- Map leaves in G to their species in S
- Map inner node g_i in postfix order (from leaves to root):
 - Map G_i to the lowest node s_i such that the species below g_i are all included below s_i

Duplication node assignment
- If g_i maps in S to the same node as one of its children, g_i is a duplication node
Tree Rooting?

- Center of gravity
 - Storm & Sonnhammer 2002

- Min # of duplications
 - Hallett & Lagergren 2000
 - Zmasek & Eddy 2002
 (min height to break ties)

- Outgroup (tricky)
 - Huerta-Cepas et al. 2007
Tree Inference Errors?

- Bootstrapping
 - Storm & Sonnhammer 2002
 - Zmasek & Eddy 2002
- Multifurcation (unresolved branches)
 - Dufayard et al. 2005
 - Berglund-Sonnhammer et al. 2006
 - Durand et al. 2006
High Duplication/Loss Rates?

- Maximum parsimony criterion may be inappropriate
Case study: Ensembl Compara

Pairwise Methods
The basic idea

Between two species, orthologs are closer than paralogs.

- Closer genes usually have higher alignment scores → species-specific top scoring hit is likely to be an ortholog
- Corresponding ortholog might be missing → require symmetry

“Bidirectional best hit” (BBH)
Refinements

- Instead of score, use evolutionary distance “Reciprocal smallest distance” (RSD)
- Relax the top/smallest requirement to include more than one orthologs (e.g. 1:many orthology)
- Take into account statistical uncertainty of distance estimates
- Detect differential gene losses

Wall et al., Bioinformatics, 2003
Dessimoz et al., RECOMB CG Dublin, 2005
Fulton et al., BMC Bioinformatics, 2006
Dessimoz et al., Nucleic Acids Res, 2006
Roth et al., BMC Bioinformatics, 2008
Verification of stable pairs
Verification of stable pairs

- \((x_1, z_3)\) and \((y_2, z_4)\) are stable pairs
- \((x_1, z_3)\) signif. closer than \((x_1, z_4)\)
- \((y_1, z_4)\) signif. closer than \((y_2, z_3)\)
- \((x_1, z_4)\) and \((y_2, z_3)\) not signif. different

Dessimoz, Boeckmann, et al., Nucl Acid Res, 2006
All protein sequences from full genomes → All x All Comparison → Candidate Pairs → Formation of Stable Pairs → Stable Pairs → Verification of Stable Pairs → Verified Pairs → Clustering of Orthologs → Group Pairs

<table>
<thead>
<tr>
<th>Pairs</th>
<th>Evolutionary Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Pairs (AP)</td>
<td>Any</td>
</tr>
<tr>
<td>Candidate Pairs (CP)</td>
<td>Homologs</td>
</tr>
<tr>
<td>Stable Pairs (SP)</td>
<td>Orthologs, Pseudo-Orthologs</td>
</tr>
<tr>
<td>Broken Pairs (BP)</td>
<td>Paralogs</td>
</tr>
<tr>
<td>Verified Pairs (VP)</td>
<td>Orthologs</td>
</tr>
<tr>
<td>Group Pairs (GP)</td>
<td>Close Orthologs</td>
</tr>
</tbody>
</table>

Roth et al., BMC Bioinformatics, 2008
Last release has 1109 Genomes
Alignment efficiency

Szalkowski et al, BMC Res Notes 2009
Groups of Orthologs
Ideally: partition of sequences into *equivalence classes*

i.e. two genes are orthologous if and only if they belong to the same group.

but this is not possible because of the non-transitivity of orthology
Reconciled Tree (Goodman et al. 1979)

- All orthologs/paralogs can be derived from the reconciled tree

- Examples:
 - Ensembl Compara
 - Panther
 - PhylomeDb
COGs *(Tatusov et al. 1997)*

Each COG is assumed to have evolved from an individual ancestral gene through a series of speciation and duplication events.

Who is the “ancestor”?
- last bacterial common ancestor (COG)
- last eukaryotic common ancestor (KOG)

Other methods: MultiParanoid
OrthoMCL groups

(Li et al. 2003)

- Groups of orthologs and “recent” paralogs
- In their paper, “recent” is defined as happening after all speciations
Hierarchical Ortholog Groups

- To express all orthology relations, groups must be defined for all ancestral species

- **Examples:**
 - OrthoDB
 - EggNOG
 - MBGD
 - OMA Hierarchical Groups
Inparanoid groups (Remm et al. 2001)

- Consider only two species at a time
- Examples: Inparanoid OMA Genome Pair View
Strict orthologous groups

- Two genes are orthologous if they belong to the same group
- Example: PHOG-S
 OMA Groups

```
A1
|   |
B1  D1
|-----|
E1  C2
```
Evaluating Orthology Predictions

Previous work

Research

Benchmarking ortholog identification methods using functional genomics data
Tim Hulsen*, Martijn A Huynen*, Jacob de Vlieg*† and Peter MA Groenen†
Genome Biology 2006, 7:R31

Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes
Feng Chen1,3, Aaron J. Mackey2,3*, Jeroen K. Vermunt4, David S. Roos2,3*
PLoS One April 2007 | Issue 4 | e383
Projects under Scrutiny

May 2009

- COG
- KOG
- eggNOG
- orthoMCL
- Inparanoid
- ENSEMBL
- Homologene
- RoundUp
- OMA

- Archaea
- Bacteria
- Eukaryota
Comparison Approach

- For each project, map sequences to OMA
 7.16 million sequences in total
 329.2 million orthology relations

- Intersection over all projects: ∅
 ➔ “pairwise” tests with OMA
 ➔ “intersection” tests with subset
Assessment of Orthologs

<table>
<thead>
<tr>
<th>Phylogeny</th>
<th>Conserved function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species Tree Discordance</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>Phylogenetic Analyses from Literature</td>
<td>Enzyme Classification</td>
</tr>
<tr>
<td></td>
<td>Gene Expression</td>
</tr>
<tr>
<td></td>
<td>Genomic Context</td>
</tr>
</tbody>
</table>
Species Tree Discordance

Homo sapiens Other Primates Other Mammals Other Vertebrates Protosomes (Worms & co) Fungi
Species Tree Discordance

5-6 eukaryotes, ML trees

Avg. fraction of correct splits

- EggNOG OMA Pairwise
- OrthoMCL OMA Pairwise
- Inparanoid OMA Pairwise
- Homologene OMA Pairwise
- Ensembl Compara OMA Pairwise
- RoundUp OMA Pairwise
- OMA Group OMA Pairwise
- RSD OMA Pairwise
- BBH OMA Pairwise
Species Tree Discordance

6-7 bacteria, distance trees

fraction of correct splits

COG RoundUp OMA Pairwise OMA Group RSD BBH
Panther Ontology Conservation

The diagram illustrates the relative difference in mean PANTHER similarity compared to OMA. The relative difference in number of ortholog predictions compared to OMA is also shown. The data points indicate how various methods compare to OMA, with better results towards the right side of the graph.
Limitations and Future Directions
Limits of Pairwise Relations

• Useful if focused on a particular gene
• But several shortcomings:
 - Evolutionary distance?
 - Function conservation?
 - Grouping strategy?

Review
"Large-scale assignment of orthology: back to phylogenetics?"
Toni Gabaldón
Bioinformatics and Genomics Program, Center for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain.
Email: tgbaldon@erg.es

Published: 30 October 2008
Limits of Model

- Lateral gene transfer?
- Gene fusion/fission?
- Domain shuffling?
- Heterogeneous population?
- Hybridization?

Dessimoz et al., RECOMB 2008
How confident can we be that orthologs are similar, but paralogs differ?

Romain A. Studer and Marc Robinson-Rechavi

Department of Ecology and Evolution, Biophore, Lausanne University, CH-1015 Lausanne, Switzerland and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland

Homologous genes are classified into orthologs and paralogs, depending on whether they arose by speciation or duplication. It is widely assumed that orthologs share similar functions, whereas paralogs are expected to diverge more from each other. But does this assumption hold up on further examination? We present evidence that orthologs and paralogs are not so different in either their evolutionary rates or their mechanisms of divergence. We emphasize the importance of appropriately designed studies to test models of gene evolution between orthologs and between paralogs. Thus, functional change between orthologs might be as common as between paralogs, and future studies should be designed to test the impact of duplication against this alternative model.

But the assumption that changes in function are commonly associated with duplication has rarely been explicitly tested. Although there have been many studies of comparative genomics focused on the role of duplication (for a review, see Ref. [1]), few have compared the evolution of paralogs with the evolution of orthologs. However, these studies repeatedly find little, if any, specific impact of duplication. This pattern is surprising if the standard model is correct.

This ‘standard model’ makes two predictions. First, paralogs are expected to diverge more per unit of time than orthologs. Second, paralogs are expected to diverge frequently in ways that are rarely observed between orthologs; for example, different substrate specificities. Divergence can concern different aspects of gene function [3],...
Limits of Computational Inference

Growth of GO Annotations

- Experimental
- Automated, uncurated
Questions?